Affordable Access

Unconstrained facial expression recognition in still images and video sequences using Random Forest classifiers

Authors
Publisher
McGill University
Publication Date
Keywords
  • Engineering - Electronics And Electrical

Abstract

L'objectif de ce projet est de construire et mettre en œuvre un cadre complète de détection de l'expression du visage par l'utilisation d'un détecteur de visage exclusif (PittPatt) et un nouveau classificateur composé d'un ensemble de 'Random Forests' a accompagné d'un étiqueteur 'support vector machine' ou 'k-nearest neighbour'. Le système doit effectuer au temps réel, dans des conditions sans contrainte, sans aucune intervention humaine intermédiaires. La base de données d'images fixes 'Binghamton University 3D Facial Expressions' était utilisé à des fins de formation. Un nombre de bases de données d'expression d'images fixes et de vidéo ont été utilisés pour l'évaluation. Des données quantitatives pour l'analyse qualitative, et parfois intuitive, les sujets liés à l'expression faciale constituaient la contribution principale et théorique sur le terrain.

There are no comments yet on this publication. Be the first to share your thoughts.