Affordable Access

Sur les foyers des cycliques

Authors
Publication Date
Disciplines
  • Communication
  • Geography
  • Mathematics

Abstract

Sur les foyers des cycliques BULLETIN DE LA S. M. F. L. SALTEL Sur les foyers des cycliques Bulletin de la S. M. F., tome 3 (1875), p. 100-101. <http://www.numdam.org/item?id=BSMF_1875__3__100_1> © Bulletin de la S. M. F., 1875, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitu- tive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ 100 Sur les foyers des cycliques; par M. L. SALTEL. (Séance du 14 avril 1875) L'objet de cette nouvelle communication est d'enseigner à déterminer géométriquement le foyer singulier d'une cubique circulaire, définie par sept points, et d'indiquer une voie qui probablement conduira à la déter- mination de ces mêmes points dans les cycliques du 4ème ordre. THÉORÈME I. — Soient A une parallèle quelconque à l'asymptote réelle d'une cubique circulaire 2, et G, I) ses deux points de rencontre avec cette courbe. Si, par ces deux points, on mène autant de cercles que Von veut, cou- pant ^ aux points {a^^), (ag,^), (a^ps),..., les perpendiculaires élevées sur les milieux des droites (a^), (a^g), (a^),... passent toutes par le foyer sin- gulier de la cubique. THÉORÈME II. — Si, du foyer singulier d'une cubique circulaire comme centre^ on décrit des cercles de rayons arbitraires, le lieu des pieds des per- pendiculaires abaissées du foyer sur les cordes que ces cercles déterminent sur la cyclique, est un cercle, — 101 — PROBLÈME. — Reconnaître si un point donné P est foyer d'une cyclique du 4èl[ne ordre, définie par huit points. Notre détermination d'un conique qui passe par les quatre points com- mun

There are no comments yet on this publication. Be the first to share your thoughts.