Affordable Access

Publisher Website

Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels

Biochimica et Biophysica Acta (BBA) - Biomembranes
Publication Date
DOI: 10.1016/j.bbamem.2005.02.003
  • Photodynamic Therapy (Pdt)
  • Targeting
  • Polyethylene Glycol (Peg)
  • Liposome
  • Angiogenesis
  • Medicine


Abstract For the improvement of therapeutic efficacy in photodynamic therapy (PDT) by using a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA), we previously prepared polyethylene glycol (PEG)-modified liposomes encapsulating BPD-MA (PEG-Lip BPD-MA). PEGylation of liposomes enhanced the accumulation of BPD-MA in tumor tissue at 3 h after injection of it into Meth-A-sarcoma-bearing mice, but, unexpectedly, decreased the suitability of the drug for PDT when laser irradiation was performed at 3 h after the injection of the liposomal photosensitizer. To improve the bioavailability of PEG-Lip BPD-MA, we endowed the liposomes with active-targeting characteristics by using Ala-Pro-Arg-Pro-Gly (APRPG) pentapeptide, which had earlier been isolated as a peptide specific to angiogenic endothelial cells. APRPG-PEG-modified liposomal BPD-MA (APRPG-PEG-Lip BPD-MA) accumulated in tumor tissue similarly as PEG-Lip BPD-MA and to an approx. 4-fold higher degree than BPD-MA delivered with non-modified liposomes at 3 h after the injection of the drugs into tumor-bearing mice. On the contrary, unlike the treatment with PEG-Lip BPD-MA, APRPG-PEG-Lip BPD-MA treatment strongly suppressed tumor growth after laser irradiation at 3 h after injection. Finally, we observed vasculature damage in the dorsal air sac angiogenesis model by APRPG-PEG-Lip BPD-MA-mediated PDT. The present results suggest that antiangiogenic PDT is an efficient modality for tumor treatment and that tumor neovessel-targeted, long-circulating liposomes are a useful carrier for delivering photosensitizer to angiogenic endothelial cells.

There are no comments yet on this publication. Be the first to share your thoughts.