Affordable Access

Publisher Website

Targeted In Vivo Extracellular Matrix Formation Promotes Neovascularization in a Rodent Model of Myocardial Infarction

Authors
Journal
PLoS ONE
1932-6203
Publisher
Public Library of Science
Publication Date
Volume
5
Issue
4
Identifiers
DOI: 10.1371/journal.pone.0010384
Keywords
  • Research Article
  • Biotechnology/Bioengineering
  • Biotechnology/Small Molecule Chemistry
  • Cardiovascular Disorders/Myocardial Infarction
Disciplines
  • Biology
  • Chemistry

Abstract

Background The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair. Methodology/Principal Findings Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were assessed for in vitro and in vivo tendencies for angiogenesis. Three of the four peptides—Hep I, Hep III, RGD—were identified and shown to increase endothelial cell attachment, proliferation, migration and cell activation in vitro. By chemically conjugating these peptides to an anti-myosin heavy chain antibody, the peptides could be administered intravenously and specifically targeted to the site of the myocardial infarction. When administered into Sprague-Dawley rats that underwent ischemia-reperfusion myocardial infarction, these peptides produced statistically significantly higher levels of angiogenesis and arteriogenesis 6 weeks post treatment. Conclusions/Significance We demonstrated that antibody-targeted ECM-derived peptides alone can be used to sufficiently alter the extracellular matrix microenvironment to induce a dramatic angiogenic response in the myocardial infarct area. Our results indicate a potentially new non-invasive strategy for repairing damaged tissue, as well as a novel tool for investigating in vivo cell biology.

There are no comments yet on this publication. Be the first to share your thoughts.