Affordable Access

Publisher Website

Oceanographic investiations from the Sea of Ochotsk

Authors
Publisher
PANGAEA
Publication Date
Identifiers
DOI: 10.1594/pangaea.743860
Keywords
  • <63 µM
  • >1 Mm
  • >63 µM
  • 1-0
  • 5 Mm
  • 125-63 µM
  • 2182
  • 2185
  • 250-125 µM
  • 500-250 µM
  • A*
  • Akademik A Nesmeyanov
  • Akademik M
  • A
  • Lavrentyev
  • B*
  • Biogenic
  • Biogenic Material
  • Total
  • Bsio2
  • C/N
  • C
  • Lobatulus D13C
  • C
  • Lobatulus D18O
  • C
  • Wuellerstorfi D13C
  • C
  • Wuellerstorfi D18O
  • Caco3
  • Calcium Carbonate
  • Calculated
  • Carbon
  • Organic
  • Total
  • Carbon/Nitrogen Ratio
  • Cgs Units
  • Cibicides Lobatulus
  • D13C
  • Cibicides Lobatulus
  • D18O
  • Cibicidoides Wuellerstorfi
  • D13C
  • Cibicidoides Wuellerstorfi
  • D18O
  • Color
  • A*
  • Reflectivity
  • Color
  • B*
  • Color
  • L*
  • Lightness
  • Counting 125-500 µM Fraction
  • Dbd
  • Density
  • Dry Bulk
  • Diatoms
  • Element Analyser Chn
  • Foram Bent
  • Foraminifera
  • Benthic
  • Foraminifera
  • Planktic
  • Foram Plankt
  • Gravity Corer
  • Gravity Corer (Kiel Type)
  • Gravity Corer (Poi)
  • Kappa
  • Kasten Corer
  • Komex
  • Komex I
  • Kurile-Okhotsk Sea Marine Experiment
  • L*
  • Lv27/Gregory
  • Lv27-10-1
  • Lv27-10-5
  • Lv27-12-2
  • Lv27-12-3
  • Lv27-15-1
  • Lv27-4-2
  • Lv27-4-3
  • Lv27-5-4
  • Lv27-5-5
  • Lv27-7-2
  • Lv27-7-3
  • Lv27-8-2
  • Lv27-8-3
  • Lv27-9-4
  • Lv28
  • Lv28-2-2
  • Lv28-2-3
  • Lv28-34-1
  • Lv28-34-2
  • Lv28-40-3
  • Lv28-40-4
  • Lv28-41-3
  • Lv28-41-4
  • Lv28-42-3
  • Lv28-42-4
  • Lv28-4-3
  • Lv28-4-4
  • Lv28-44-2
  • Lv28-44-3
  • Mica
  • Multicorer
  • Multi-Sensor Core Logger
  • N
  • Pachyderma S D13C
  • N
  • Pachyderma S D18O
  • Neogloboquadrina Pachyderma Sinistral
  • D13C
  • Neogloboquadrina Pachyderma Sinistral
  • D18O
  • Nitrogen
  • Total
  • Ok92
  • Ok92_2182
  • Ok92_2185
  • Opal
  • Auto Analysis (Müller & Schneider
  • 1993)
  • Opal
  • Biogenic Silica
  • Opaque
  • Opaque Minerals
  • Quartz
  • Rad
  • Radiolarians
  • Rock Fragm
  • Rock Fragments
  • Sea Of Okhotsk
  • Siliciclast
  • Siliciclastics
  • Size Fraction < 0
  • 063 Mm
  • Mud
  • Pelite
  • Silt+Clay
  • Size Fraction > 0
  • 063 Mm
  • Sand
  • Size Fraction > 1 Mm
  • Gravel
  • Size Fraction 0
  • 125-0
  • 063 Mm
  • 3
  • 0-4
  • 0 Phi
  • Very Fine Sand
  • Size Fraction 0
  • 250-0
  • 125 Mm
  • 2
  • 0-3
  • 0 Phi
  • Fine Sand
  • Size Fraction 0
  • 500-0
  • 250 Mm
  • Size Fraction 1
  • 000-0
  • 500 Mm
  • 0
  • 0-1
  • 0 Phi
  • Coarse Sand
  • Spectrophotometer Minolta Cr-300
  • Sponge Spic
  • Sponge Spiculae
  • Suscept
  • Susceptibility
  • Susceptibility
  • Volume
  • Terr
  • Terrigeneous
  • Tn
  • Toc
  • U
  • Angulosa D13C
  • U
  • Angulsoa D18O
  • U
  • Auberiana D13C
  • U
  • Auberiana D18O
  • U
  • Bifurcata D13C
  • U
  • Bifurcata D18O
  • U
  • Peregrina D13C
  • U
  • Peregrina D18O
  • U
  • Semiornata D13C
  • U
  • Semiornata D18O
  • Uvigerina Angulosa
  • D13C
  • Uvigerina Angulsoa
  • D18O
  • Uvigerina Auberiana
  • D13C
  • Uvigerina Auberiana
  • D18O
  • Uvigerina Bifurcata
  • D13C
  • Uvigerina Bifurcata
  • D18O
  • Uvigerina Peregrina
  • D13C
  • Uvigerina Peregrina
  • D18O
  • Uvigerina Semiornata
  • D13C
  • Uvigerina Semiornata
  • D18O
  • Volcanic
  • Volcanic Components
  • Volcanic Glass
  • Volc Glass
Disciplines
  • Archaeology
  • Biology
  • Chemistry
  • Earth Science
  • Geography

Abstract

The Sea of Okhotsk is a marginal sea of the Pacific Ocean, which is characterized by strong variations in the productivity and sediment supply due to sea ice transport and river input. Furthermore the variations in the hydrological cycle determine the formation of the SOIW (Sea of Okhotsk Intermediate Water) which plays an important role in the ventilation processes in the intermediate water of the N-Pacific. Isotope data measured on planktonic and benthic foraminifera, sedimentological and geochemical studies of sediment cores and surface samples from the Sea of Okhotsk are used to reconstruct the paleoceanography during the past 350.000 years. The dating and correlation of the sediments are based on oxygen isotope stratigraphy, absolute ages, magnetic susceptibility as well as a detailled tephrachronology of the entire basin. The sedimentation rates are characterized by temporal and spatial variations. The maximum sedimentation rate takes place at the continental slope off Sakhalin due to the input of the Amur River, the sea ice drift and the high productivity. The sedimentation rate in the eastern part of the Sea of Okhotsk is generelly high because of the influence of the nutrient-rich Kamchatka Current. In the central and northern parts of the Sea of Okhotsk, areas with low productivity and reduced terrestrial supply, the sedimentation rate is the lowest. The analyses of the surface sediment samples make it possible to characterize the (sub)- recent sediment supply and transportation processes. The bulk sediment measurements, isotope data and the accumulation rate of ice-rafted debris (IRD) show a dominant sea ice cover and a region with a high productivity as well as a high Amur River input in the western part of the sea. The eastern part of the Sea of Okhotsk, however, is marked by the predominance of warm and nutrient-rich water masses coming from the Kamchatka Current which restricts the sea ice cover. This is reflected in low content of ice-rafted debris and high productivity proxies as well as in isotope data. The deposits of the Sea of Okhotsk are characterized by terrestrial, biogenic and volcanogenic sediment input which varies temporally and spatially. Here, the sedimentation pattern is dominated by the terrestrial input. Bulk sediment measurements and sample analyses of the > 63 micron particle input make it possible to distinguish glacial and interglacial fluctuations. The sedimentation processes during glacial times are determined by a high content of ice-rafted debris, whereas the primary production is higher during interglacial periods. During the last glacial/interglacial cycle the IRD-distribution pattern indicates a strong sea ice transport in the western part and in large areas of the open sea in the eastern part of the Sea of Okhotsk with a relatively constant ice-drift system. The IRD flux in sediments of the oxygen isotope Stage 6 reflects a new sedimentation pattern in the eastern part of the sea. This high IRD accumulation rate indicates ice advances beyond the shelf margin and an iceberg transport from NE-E direction into the Sea of Okhotsk. The several large, brief, negative anomalies in d13C values of Neogloboquadrina pachyderma (s) show releases of methane from basin sediments which correspond to periods of relative sea level falls. The high sedimentation rates on the Sakhalin slope allow insights into the climatic history in Holocene and indicate shorter-scale variations oscillation in Stage 3, which correlate with the global climatic changes. These variations are described as Dansgaard-Oeschger cycles in Greenland ice cores and as Heinrich-Events in several marine sediment cores from the N-Atlantic.

There are no comments yet on this publication. Be the first to share your thoughts.