Affordable Access

Publisher Website

Muscarinic activation of a non-selective cationic conductance in pyramidal neurons in rat basolateral amygdala

Publication Date
DOI: 10.1016/s0306-4522(98)00210-3
  • Slices
  • Intracellular
  • Receptors
  • Ca2+Independent


Abstract In the present study, a cationic membrane conductance activated by the acetylcholine agonist carbachol was characterized in vitro in neurons of the basolateral amygdala. Extracellular perfusion of the K + channel blockers Ba 2+ and Cs + or loading of cells with cesium acetate did not affect the carbachol-induced depolarization. Similarly, superfusion with low-Ca 2+ solution plus Ba 2+ and intracellular EGTA did not affect the carbachol-induced depolarization, suggesting a Ca 2+-independent mechanism. On the other hand, the carbachol-induced depolarization was highly sensitive to changes in extracellular K + or Na +. When the K + concentration in the perfusion medium was increased from 4.7 to 10 mM, the response to carbachol increased in amplitude. In contrast, lowering the extracellular Na + concentration from 143.2 to 29 mM abolished the response in a reversible manner. Results of co-application of carbachol and atropine, pirenzepine or gallamine indicate that the carbachol-induced depolarization was mediated by muscarinic cholinergic receptors, but not the muscarinic receptor subtypes M1, M2 or M4, specifically. These data indicate that, in addition to the previously described reduction of a time- and voltage-independent K + current ( I Kleak), a voltage- and time-dependent K + current ( I M), a slow Ca 2+-activated K + current (s I ahp) and the activation of a hyperpolarization-activated inward rectifier K + current ( I Q), carbachol activated a Ca 2+-independent non-selective cationic conductance that was highly sensitive to extracellular K + and Na + concentrations.

There are no comments yet on this publication. Be the first to share your thoughts.