Affordable Access

Publisher Website

On the lack of host-cell reactivation of UV-irradiated phage T5 II. Further characterization of the repair inhibition exerted by T5 infection

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Publication Date
DOI: 10.1016/0027-5107(76)90002-6
  • Biology


Abstract Experiments reported in the preceding paper [4] had shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5. The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the “second-step-transfer” region of T5 DNA (involving the remainder of the genome). Superinfection with T4 ν 1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times