Affordable Access

Toward the optimal dose metric in continuous renal replacement therapy

Authors
Journal
The International Journal of Artificial Organs
0391-3988
Publisher
"Wichtig Publishing, SRL"
Publication Date
Keywords
  • Dialysis
  • Dose
  • Urea
  • Clearance
  • Acute Kidney Injury
Disciplines
  • Medicine

Abstract

Purpose: There is no consensus on the optimal method to measure delivered dialysis dose in patients with acute kidney injury (AKI). The use of direct dialysate-side quantification of dose in preference to the use of formal blood-based urea kinetic modeling and simplified blood urea nitrogen (BUN) methods has been recommended for dose assessment in critically-ill patients with AKI. We evaluate six different blood-side and dialysate-side methods for dose quantification. Methods: We examined data from 52 critically-ill patients with AKI requiring dialysis. All patients were treated with pre-dilution CWHDF and regional citrate anticoagulation. Delivered dose was calculated using blood-side and dialysis-side kinetics. Filter function was assessed during the entire course of therapy by calculating BUN to dialysis fluid urea nitrogen (FUN) ratios q/12 hours. Results: Median daily treatment time was 1,413 min (1,260-1,440). The median observed effluent volume per treatment was 2,355 mL/h (2,060-2,863) (p<0.001). Urea mass removal rate was 13.0 +/- 7.6 mg/min. Both EKR (r(2)=0.250; p<0.001) and K-D (r(2)=0.409; p<0.001) showed a good correlation with actual solute removal. EKR and K-D presented a decline in their values that was related to the decrease in filter function assessed by the FUN/BUN ratio. Conclusions: Effluent rate (ml/kg/h) can only empirically provide an estimated of dose in CRRT. For clinical practice, we recommend that the delivered dose should be measured and expressed as K-D. EKR also constitutes a good method for dose comparisons over time and across modalities.

There are no comments yet on this publication. Be the first to share your thoughts.