Affordable Access

Publisher Website

Recommendations for tool-handle material choice based on finite element analysis

Applied Ergonomics
DOI: 10.1016/j.apergo.2013.07.014
  • Tool-Handle Material
  • Ergonomics
  • Finite Element Analysis


Abstract Huge areas of work are still done manually and require the usages of different powered and non-powered hand tools. In order to increase the user performance, satisfaction, and lower the risk of acute and cumulative trauma disorders, several researchers have investigated the sizes and shapes of tool-handles. However, only a few authors have investigated tool-handles' materials for further optimising them. Therefore, as presented in this paper, we have utilised a finite-element method for simulating human fingertip whilst grasping tool-handles. We modelled and simulated steel and ethylene propylene diene monomer (EPDM) rubber as homogeneous tool-handle materials and two composites consisting of EPDM rubber and EPDM foam, and also EPDM rubber and PU foam. The simulated finger force was set to obtain characteristic contact pressures of 20 kPa, 40 kPa, 80 kPa, and 100 kPa. Numerical tests have shown that EPDM rubber lowers the contact pressure just slightly. On the other hand, both composites showed significant reduction in contact pressure that could lower the risks of acute and cumulative trauma disorders which are pressure-dependent. Based on the results, it is also evident that a composite containing PU foam with a more evident and flat plateau deformed less at lower strain rates and deformed more when the plateau was reached, in comparison to the composite with EPDM foam. It was shown that hyper-elastic foam materials, which take into account the non-linear behaviour of fingertip soft tissue, can lower the contact pressure whilst maintaining low deformation rate of the tool-handle material for maintaining sufficient rate of stability of the hand tool in the hands. Lower contact pressure also lowers the risk of acute and cumulative trauma disorders, and increases comfort whilst maintaining performance.

There are no comments yet on this publication. Be the first to share your thoughts.