Affordable Access

Publisher Website

Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering

Materials Science and Engineering A
DOI: 10.1016/j.msea.2014.08.072
  • Ultra-High Strength Steel
  • Nano-Sized Cementite Carbides
  • High-Resolution Transmission Electron Microscopy
  • High-Frequency Induction Tempering


Abstract The present study describes the microstructure and precipitation behavior in an ultra-high strength low carbon niobium–vanadium microalloyed steel that was processed by quenching and high frequency induction tempering. Ultrahigh yield strength of ~1000MPa with high elongation of ~15% and high low temperature toughness of 55J (half thickness) at −40°C was obtained after quenching from austenitization at 900°C for 30min,and tempering at 600°C for 15min by induction reheating with a reheating rate of ~50°C/s. While the yield strength increase on tempering was similar for both induction reheating and conventional reheating (electrical resistance reheating), there was ~100% increase in low temperature toughness in induction reheated steel compared to the conventional reheating process. The underlying reason for the increase in toughness was attributed to the transformation of cementite film observed in conventional reheating and tempering to nanoscale cementite in induction reheating and tempering. The precipitation of nanoscale carbides is believed to significantly contribute to ultra-high strength, good ductility, and high toughness in the high frequency induction reheating and tempering process.

There are no comments yet on this publication. Be the first to share your thoughts.