Affordable Access

Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction

Biosensors and Bioelectronics
Publication Date
  • 복합학
  • Bioelectronic Nose
  • Human Olfactory Receptor
  • Nanovesicle
  • Carbon Nanotube
  • Nanobiosensor
  • Field Effect Transistor
  • Biology
  • Medicine


We developed a nanovesicle-based bioelectronic nose (NBN) that could recognize a specific odorant and mimic the receptor-mediated signal transmission of human olfactory systems. To build an NBN, we combined a single-walled carbon nanotube-based field effect transistor with cell-derived nanovesicles containing human olfactory receptors and calcium ion signal pathways. Importantly, the NBN took advantages of cell signal pathways for sensing signal amplification, enabling similar to 100 times better sensitivity than that of previous bioelectronic noses based on only olfactory receptor protein and carbon nanotube transistors. The NBN sensors exhibited a human-like selectivity with single-carbon-atomic resolution and a high sensitivity of 1 fM detection limit. Moreover, this sensor platform could mimic a receptor-meditated cellular signal transmission in live cells. This sensor platform can be utilized for the study of molecular recognition and biological processes occurring at cell membranes and also for various practical applications such as food screening and medical diagnostics. (C) 2012 Elsevier B.V. All rights reserved.

There are no comments yet on this publication. Be the first to share your thoughts.