Affordable Access

Integrating chemical engineering fundamentals in the capstone process design project

Authors
Publication Date
Keywords
  • All B
  • Eng
  • Courses Offered At The Technical University Of Denmark (Dtu) Must Now Follow Cdio Standards
  • The Final “Capstone” Course In The B
  • Eng
  • Education Is Process Design
  • Which For Many Years Has Been Typical Of Chemical Engineering Curricula Worldwide
  • The Course At Dtu Typically Has About 30 Students
  • The B
  • Eng
  • Education Lasts For 3½ Years (Seven Semesters)
  • Of Which The 5Th Semester Consists Of Practical Training With A Company And The Final (7Th) Semester
  • The Design Course Falls In The 6Th Semester
  • And Is Thus The Last Formal Instruction That The Students Receive
  • The Education Is Designed To Provide Students With The Necessary Tools To Become Productive In A Com
  • Some Students Choose To Continue With Their Studies And Can Then Complete An M
  • Sc
  • After A Further Two Years Of Study
  • The Demands Of The Cdio Standards – Especially Standard 3 – Integrated Curriculum - Means That T
  • In Each Semester Of The B
  • Eng
  • Education
  • One Course Is Designated The “Project” Course
  • Which Should Draw On Material Learned In Parallel Courses
  • In The 6Th Semester
  • Process Design Is The Project Course
  • Process Control And Reaction Engineering Are Then Incorporated Into The Final Plant Design Project
  • Specifically
  • Almost All Chemical Plants Will Incorporate One Or More Chemical Reactors
  • In The Initial Stages Of A Process Design
  • It Is Sufficient To Express Simply The Reactor Inputs And Outputs
  • However In Later Stages
  • Details About The Reactor Need To Be Specified
  • This Is Only Possible Using Tools Learned In The Course Reaction Engineering
  • In Order To Incorporate Reactor Design Into Process Design In A Meaningful Way
  • The Teachers Of The Respective Courses Need To Collaborate (Standard 9 – Enhancement Of Faculty Cd
  • The Students Also Seethat Different Components Of The Chemical Engineering Curriculum Relate To Each
  • Similarly
  • In Process Design
  • Steady State Is Always Assumed For Processes (I
  • E
  • Production Of A Given Chemical Occurs At A Constant Rate
  • Temperature
  • Pressure And Composition
  • Feeds Enter The Plant At Constant Rates
  • Etc
  • )
  • However
  • In Practice
  • Chemical Plants Need To Be Carefully Controlled To Operate At A Specified Set Of Steady-State Condit
  • This Is The Science Of Process Control And The Students Are Asked To Apply What They Have Learned He
  • The Key Difference From Typical (Earlier) Process Design Courses Is That The Interaction Between The
  • Requiring (Amongst Other Things) Increased
  • Broader Teacher Competence And Communication Between Teachers Across Different Disciplines
  • Thereby Also Tying In With Standard 9 – Enhancement Of Faculty Cdio Skills
  • From A Cdio Perspective
  • Process Design Provides An Opportunity For A Comprehensive Implementation Of Cdio Principles In A Si
  • Already The Traditional Chemical Engineering “Capstone” Design Course Has For Decades Embodied M
  • Development Of Interpersonal Skills
  • The Open-Ended Nature Of Design Problems
  • Etc
  • )
Disciplines
  • Chemistry
  • Design
  • Engineering

Abstract

Integrating chemical engineering fundamentals in the capstone process design project - DTU Orbit (18/04/14) Integrating chemical engineering fundamentals in the capstone process design project - DTU Orbit (18/04/14) von Solms N, Woodley J, Johnsson JE, Abildskov J. Integrating chemical engineering fundamentals in the capstone process design project. In Proceedings of CDIO conference. 2010.

There are no comments yet on this publication. Be the first to share your thoughts.