Affordable Access

Publisher Website

Target-site mechanism of ACCase-inhibitors resistance in American sloughgrass (Beckmannia syzigachneSteud.) from China

Pesticide Biochemistry and Physiology
DOI: 10.1016/j.pestbp.2014.03.001
  • Beckmannia Syzigachne
  • Fenoxaprop-P-Ethyl
  • Resistance
  • Mutation
  • Dcaps


Abstract American sloughgrass (Beckmannia syzigachne) is a troublesome weed in winter wheat field rotated with rice in China. Fenoxaprop-p-ethyl and pinoxaden were observed failing to control American sloughgrass in the same filed in Lujiang county in 2011 and 2012, respectively. Whole-plant bioassay was conducted to determine the resistance to fenoxaprop-p-ethyl, pinoxaden and other herbicides in American sloughgrass. Dose–response experiment indicated that Lujiang population was highly resistant to fenoxaprop-p-ethyl (199.8-fold), pinoxaden (76.2-fold), clodinafop-propargyl (334.1-fold) and sethoxydim (15.9-fold); moderately resistant to clethodim (6.3-fold), susceptible to mesosulfuron-methyl, flucarbazone-sodium, pyroxsulam and isoproturon. Partial gene of CT domain was cloned and sequenced to confirm the molecular mechanism of resistance to ACCase-inhibiting herbicides. A Trp2027Cys mutation was found in Lujiang population according to the sequencing result. This mutation is the molecular mechanism of resistance to fenoxaprop-p-ethyl in Lujiang population. Furthermore the Trp2027Cys mutation very likely results in cross resistance to clodinafop-propargyl and pinoxaden in Lujiang population. 103 mutant homozygotes were detected from the 108 plants tested using a rapid dCAPS method developed in this paper. This is the first report of pinoxaden resistance and a mutation at position of 2027 for American sloughgrass.

There are no comments yet on this publication. Be the first to share your thoughts.