Affordable Access

Publisher Website

Closed hypersurfaces of [formula omitted]with constant mean curvature and zero Gauß–Kronecker curvature

Authors
Publisher
Elsevier SAS
Publication Date
Volume
340
Issue
6
Identifiers
DOI: 10.1016/j.crma.2005.01.005

Abstract

Résumé Nous considérons une hypersurface fermée (compacte et sans bord) M 3 ⊂ S 4 ( 1 ) à courbure de Gauß–Kronecker identiquement nulle. Nous prouvons que si la courbure moyenne H de M 3 est constante, alors l'hypersurface M 3 est necéssairement minimale, c.à.d, H = 0 . Ce résultat généralise celui obtenu dans l'article de Ramanathan (Math. Z. 205 (1990) 645–658) concernant les hypersurfaces fermées minimales à courbure de Gauß–Kronecker identiquement nulle dans S 4 ( 1 ) . Pour citer cet article : T. Lusala, A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

There are no comments yet on this publication. Be the first to share your thoughts.