Affordable Access

Supersonic flutter of composite skin panels of repeated-sublaminate layup

Elsevier Science
Publication Date
  • Aerospace Engineering (Formerly
  • Aeronautical Engineering)
  • Design
  • Economics


In high-speed aerospace vehicles, supersonic flutter is a well-known phenomenon of dynamic instability to which external skin panels are prone. In theory, the instability stage is expressed by the 'flutter critical parameter' Q(crit), which is a function of the stiffness-, and dynamic pressure parameters. For a composite skin panel, Q(crit) can be maximised by lay-up optimisation. Repeated-sublaminate lay-up schemes possess good potential for economical lay-up optimisation because the corresponding effort is limited to a family of sublaminates of few layers only. When Q(crit) is obtained for all sublaminates of a family, and the sublaminates ranked accordingly, the resulting ranking reveals not only the optimum lay-up, but also the near-optimum lay-ups, which are useful design alternatives, and the inferior lay-ups which should be avoided. In this paper, we examine sublaminate-ranking characteristics for a composite panel prone to supersonic flutter. In particular, we consider a simple supported midplane-symmetrical rectangular panel of typical aspect ratio alpha and flow angle psi, and for four-layered sublaminates, obtain the Q(crit)-based rankings for a wide range of the number of repeats, r. From the rankings, we find that an optimum lay-up can exist for which the outermost layer is oriented wide of, rather than along, the flow. Furthermore, for many lay-ups other than the optimum and the inferior, we see that as r increases, Q(crit) undergoes significant change in the course of converging. To reconcile these findings, eigenvalue-coalescence characteristics are discussed in detail for specific cases.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times