Affordable Access

Publisher Website

Interleukin-1-induced changes in the glioblastoma secretome suggest its role in tumor progression

Journal of Proteomics
Publication Date
DOI: 10.1016/j.jprot.2014.01.024
  • Interleukin-1
  • Secretome
  • Label Free Quantitation
  • Tgfβ
  • Extracellular Matrix
  • Innate Immunity
  • Biology
  • Chemistry


Abstract The tumor microenvironment including glial cells and their inflammatory products regulates brain tumor development and progression. We have previously established that human glioma cells are exquisitely sensitive to IL-1 stimulation leading us to undertake a comparative analysis of the secretome of unstimulated and cytokine (IL-1)-stimulated glioblastoma cells. We performed label-free quantitative proteomic analysis and detected 190 proteins which included cytokines, chemokines, growth factors, proteases, cell adhesion molecules, extracellular matrix (ECM) and related proteins. Measuring area under the curve (AUC) of peptides for quantitation, the IL-1-induced secretome contained 13 upregulated and 5 downregulated extracellular proteins (p<0.05) compared to controls. Of these, IL-8, CCL2, TNC, Gal-1 and PTX3 were validated as upregulated and SERPINE1, STC2, CTGF and COL4A2 were validated as downregulated factors by immunochemical methods. A major representation of the ECM and related proteins in the glioblastoma secretome and their modulation by IL-1 suggested that IL-1 induces its effect in part by altering TGFβ expression, activity and signaling. These findings enhance our understanding of IL-1-induced modulation of glioma microenvironment, with implications for increased tumor invasion, migration and angiogenesis. They further provide novel targets for the glioblastoma intervention. Biological significance Present study is on an unbiased screening of the glioblastoma secretome stimulated by IL-1 which triggers neuroinflammatory cascades in the central nervous system. Network of secreted proteins were shown to be regulated revealing their possible contribution to glioma progression. Label free quantitative proteomics has provided unique novel targets for potential glioblastoma intervention.

There are no comments yet on this publication. Be the first to share your thoughts.