Affordable Access

Interaction of Escherichia coli RecA protein with LexA repressor. II. Inhibition of DNA strand exchange by the uncleavable LexA S119A repressor argues that recombination and SOS induction are competitive processes.

Published Article
Journal of Biological Chemistry
American Society for Biochemistry and Molecular Biology
Kowalczykowski Lab


The Escherichia coli RecA protein is involved in SOS induction, DNA repair, and homologous recombination. In vitro, RecA protein serves as a co-protease to cleave LexA repressor, the repressor of the SOS regulon; in addition, RecA protein promotes homologous pairing and DNA strand exchange, steps important to homologous recombination and DNA repair. To determine if these two functions of RecA protein are competing or parallel, the effect of uncleavable LexA S119A repressor on RecA protein-dependent activities was examined. LexA S119A repressor inhibits both the single-stranded DNA (ssDNA)-dependent ATP hydrolysis and DNA strand exchange activities of RecA protein. As for wild-type LexA repressor (Rehrauer, W. M., Lavery, P. E., Palmer, E. L., Singh, R. N., and Kowalczykowski, S. C. (1996) J. Biol. Chem. 271, 23865-23873), inhibition of ATP hydrolysis is dependent upon the presence of E. coli single-stranded DNA binding (SSB) protein, arguing that LexA repressor affects the competition between RecA protein and SSB protein for ssDNA binding sites. In contrast, inhibition of DNA strand exchange activity is SSB protein-independent, suggesting that LexA S119A repressor blocks a site required for DNA strand exchange. These results imply that there is a common site on the RecA protein filament for secondary DNA and LexA repressor binding and raise the possibility that the recombination and co-protease activities of the RecA protein filament are competitive.

There are no comments yet on this publication. Be the first to share your thoughts.