Affordable Access

APPLIED MATHEMATICS AND COMPUTATION

Authors
Publisher
Elsevier
Publication Date
Disciplines
  • Medicine

Abstract

This paper considers a basic model for a spread of two diseases in a population. The equilibria of the model are found, and their stability is investigated. In particular, we prove the stability result for a disease-free and a one-disease steady-states. Bifurcation diagrams are used to analyse the stability of possible branches of equilibria, and also they indicate the existence of a co-infected equilibrium with both diseases present. Finally, numerical simulations of the model are performed to study the behaviour of the solutions in different regions of the parameter space

There are no comments yet on this publication. Be the first to share your thoughts.