Affordable Access

Publisher Website

Matrix expression of hermite interpolation polynomials

Authors
Journal
Computers & Mathematics with Applications
0898-1221
Publisher
Elsevier
Publication Date
Volume
33
Issue
11
Identifiers
DOI: 10.1016/s0898-1221(97)00083-7
Keywords
  • Interpolation And Matrix Expression

Abstract

Abstract For distinct points x 0, x 1, …, x n in R , a function f of C d [ a, b] and nonnegative integers d 0, d 1, …, d n ≤ d, the Hermite interpolation polynomial of f( x) in Lagrange type determined by the data { f ( l) ( x i )} ( i = 0, 1, …, n, l = 0, 1, …, d i ) is the polynomial with degree m + n ( m = ∑ n i=0 d i ) which is expressed by the linear combination of these data with suitable coefficient polynomials being independent of f( x) [1–3]. In this note, a matrix expression of the Hermite interpolation polynomial is studied.

There are no comments yet on this publication. Be the first to share your thoughts.