Affordable Access

Publisher Website

Sporadic Creutzfeldt–Jakob disease subtype-specific alterations of the brain proteome: Impact on Rab3a recycling

Wiley Blackwell (John Wiley & Sons)
Publication Date
DOI: 10.1002/pmic.201200201
  • Biomedicine
  • Biology
  • Medicine


Sporadic Creutzfeldt–Jakob disease (sCJD) is characterized by wide clinical and pathological variability, which is mainly influenced by the conformation of the misfolded prion protein, and by the methionine and valine polymorphism at codon 129 of the prion protein gene. This heterogeneity likely implies differences in the molecular cascade that leads to the development of certain disease phenotypes. In this study, we investigated the proteome of the frontal cortex of patients with the two most common sCJD subtypes (MM1 and VV2) using 2D-DIGE and MS. Analysis of 2D maps revealed that 46 proteins are differentially expressed in the sCJD. Common differential expression was detected for seven proteins, four showed opposite direction of differential expression, and the remaining ones displayed subtype-specific alteration. The highest number of differentially expressed proteins was associated with signal transduction and neuronal activity. Moreover, functional groups of proteins involved in cell cycle and death, as well as in structure and motility included subtype-specific expressed proteins exclusively. The expression of Rab GDP dissociation inhibitor alpha, which regulates Rab3a-mediated neurotransmitter release, was affected in both sCJD subtypes that were analyzed. Therefore, we also investigated as to whether Rab3a recycling is altered. Indeed, we found an accumulation of the membrane-associated form, thus the active one, which suggests that dysfunction of the Rab3a-mediated exocytosis might be implicated in sCJD pathology.

There are no comments yet on this publication. Be the first to share your thoughts.