Affordable Access

Publisher Website

Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait

Gait & Posture
DOI: 10.1016/j.gaitpost.2012.12.015
  • Gait
  • High Heels
  • Center Of Mass
  • Center Of Pressure
  • Balance


Abstract High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. Knowledge of the motion of the body's center of mass (COM) with respect to the center of pressure (COP) during high-heeled gait may offer insights into the balance control strategies and provide a basis for approaches that minimize the risk of falling and associated adverse effects. The study aimed to investigate the influence of the base and height of the heels on the COM motion in terms of COM–COP inclination angles (IA) and the rate of change of IA (RCIA). Fifteen females who regularly wear high heels walked barefoot and with narrow-heeled shoes with three heel heights (3.9cm, 6.3cm and 7.3cm) while kinematic and ground reaction force data were measured and used to calculate the COM and COP, as well as the temporal-distance parameters. The reduced base of the heels was found to be the primary factor for the reduced normalized walking speed and the reduced frontal IA throughout the gait cycle. This was achieved mainly through the control of the RCIA during double-leg stance (DLS). The heel heights affected mainly the peak RCIA during DLS, which were not big enough to affect the IA. These results suggest young adults adopt a conservative strategy for balance control during narrow-heeled gait. The results will serve as baseline data for future evaluation of patients and/or older adults during narrow-heeled gait with the aim of reducing the risk of falling.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times