Affordable Access

Equilibrium configurations of three-body tethered satellite systems and their stability

McGill University
Publication Date
  • Engineering
  • Aerospace.


In this thesis, an analytical investigation of the dynamics of three-body tethered satellite systems is presented. The analysis is performed for two cases: two-dimensional and three-dimensional motion. At first, the equations governing the motion of such systems are obtained assuming that the system center of mass moves in a circular orbit around the Earth. Then, the various equilibrium configurations are obtained. The equilibrium configurations are classified in eleven groups. Three of these groups are collinear configurations, and the others are triangular configurations. A stability analysis is performed for each equilibrium configuration. It is found that two of the collinear configurations are marginally stable. These are configurations with the three masses on the local vertical. The other collinear configurations are unstable. The triangular configurations are unstable except for some systems with a small middle mass. The results for two-dimensional motion are consistent with those for three-dimensional motion.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times