Affordable Access

Development, characterization, and in vitro trials of chloroaluminum phthalocyanine-magnetic nanoemulsion to hyperthermia and photodynamic therapies on glioblastoma as a biological model

Authors
Journal
Journal of Applied Physics
0021-8979
Publisher
American Institute of Physics
Publication Date
Disciplines
  • Medicine

Abstract

A glioblastoma multiforme (GBM) is the highest grade glioma tumor (grade IV) and is the most malignant form of astrocytomas. Grade IV tumors, which are the most malignant and aggressive, affect people between the ages of 45 and 70 years. A GBM exhibits remarkable characteristics that include excessive proliferation, necrosis, genetic instability, and chemoresistance. Because of these characteristics, GBMs are difficult to treat and have a poor prognosis with a median survival of less than one year. New methods to achieve widespread distribution of therapeutic agents across infiltrative gliomas significantly improve brain tumor therapy. Photodynamic therapy (PDT) and hyperthermia (HPT) are well-established tumor therapies with minimal side effects while acting synergistically. This study introduces a new promising nanocarrier for the synergistic application of PDT and magnetic hyperthermia therapy against human glioma cell line T98 G, with cellular viability reduction down to as low as 17% compared with the control. (C) 2012 American Institute of Physics. [doi:10.1063/1.3671775]

There are no comments yet on this publication. Be the first to share your thoughts.