Affordable Access

Isolation and characterization of plaque-forming lambdadnaZ+ transducing bacteriophages.

Publication Date
  • Research Article


The Escherichia coli dnaZ gene, a deoxyribonucleic acid (DNA) polymerization gene, is located 1.2 min counterclockwise from purE, at approximately min 10.5 on the E. coli map. From a lysogen with lamdacI857 integrated at a secondary attachment site near purE, transducing phages (lambdadnaS+) that transduced a dnaZts (lambda+) recipient to temperature insensitivity (TS+) were discovered. Three different plaque-forming transducing phages were isolated from seven primary heterogenotes. Genetic tests and heteroduplex mapping were used to determine the length and position of E. coli DNA within the lambda DNA. Complementation tests demonstrated that the deletions in all three strains removed both att P and the int gene, i,e., DNA from both prophage ends. Heteroduplex mapping confirmed this result by demonstrating that all three strains had deletions of lambda DNA that covered the b2 to red region, thereby removing both prophage ends. Specifically, the deletions removed lambda DNA between the points 39.3 to 66.5% of lambda length (measured in percent length from the left and of lambda phage DNA) in all three strains. The three strains are distinct, however, because they had differing lengths of host DNA insertions. These phages must have been formed by an anomalous procedure, because standard lambda transducing phages are deleted for one prophage end only. In lambdagal and lambdabio strains, the deletions of lambda DNA begin at the union of prophage ends (i.e., position 57.3% of lambda length) and extend leftward or rightward, respectively (Davidson and Szybalski, in A, D. Hershey [ed.], The Bacteriophage Lambda, p. 45-82, 1971). Models for formation of the lambdadnaZ+ phages are discussed.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times