Affordable Access

Evaluating Performance in Continuous Context Recognition Using Event-Driven Error Characterisation

Publication Date
  • Qa75 Electronic Computers. Computer Science


Evaluating the performance of a continuous activity recognition system can be a challenging problem. To-date there is no widely accepted standard for dealing with this, and in general methods and measures are adapted from related fields such as speech and vision. Much of the problem stems from the often imprecise and ambiguous nature of the real-world events that an activity recognition system has to deal with. A recognised event might have variable duration, or be shifted in time from the corresponding real-world event. Equally it might be broken up into smaller pieces, or joined together to form larger events. Most evaluation attempts tend to smooth over these issues, using âÂ�Â�fuzzyâÂ�Â�boundaries, or some other parameter based error decision, so as to make possible the use of standard performance measures (such as insertions and deletions.) However, we argue that reducing the various facets of a activity system into limited error categories - that were originally intended for different problem domains - can be overly restrictive. In this paper we attempt to identify and characterise the errors typical to continuous activity recognition, and develop a method for quantifying them in an unambiguous manner.

There are no comments yet on this publication. Be the first to share your thoughts.