Affordable Access

deepdyve-link
Publisher Website

A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations.

Authors
  • Zhou, Liang
  • Abraham, Adam C
  • Tang, Simon Y
  • Chakrabartty, Shantanu
Type
Published Article
Journal
IEEE Transactions on Biomedical Circuits and Systems
Publisher
Institute of Electrical and Electronics Engineers
Publication Date
Dec 01, 2016
Volume
10
Issue
6
Pages
1143–1151
Identifiers
DOI: 10.1109/TBCAS.2016.2523992
PMID: 27214911
Source
Medline
License
Unknown

Abstract

Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.

Report this publication

Statistics

Seen <100 times