Affordable Access

Publisher Website

Chemistry and origin of minor and trace elements in selected vitrinite concentrates from bituminous and anthracitic coals

Authors
Journal
International Journal of Coal Geology
0166-5162
Publisher
Elsevier
Publication Date
Volume
16
Identifiers
DOI: 10.1016/0166-5162(90)90035-w

Abstract

Abstract Twelve hand-picked vitrinite concentrates and companion whole-coal samples were analyzed for trace and minor elements by instrumental neutron activation analysis (INAA) and direct-current-arc spectrographic techniques (DCAS). The vitrinite concentrates contained 94 to nearly 100 vol.% vitrinite compared to 71–95 vol.% in the companion whole coals. The ash contents of the vitrinite concentrates were 2 to more than 190 times less than the ash contents of the companion whole coals. Organic and inorganic affinities were determined by comparing the elemental concentrations in the vitrinite concentrates to the concentrations in the companion whole coals. The ratios of these concentrations for 33 selected elements are shown in Figure 1. Ratios greater than 1 indicate organic affinity, and ratios less than 1 indicate inorganic affinity. Br and W generally showed organic affinity in all samples in this study. In the nine samples from the eastern United States (Fig. 1A-C) less than one-fourth of the trace elements show organic affinity compared to nearly one-half for the three English and Australian samples (Fig. 1D). The elements that generally show organic affinity in the non-U.S.A. samples studied include As, Cs, Hf, and Ni, which have generally inorganic affinities in the U.S.A. samples, and Cr, Sb, Se, and U, which have mixed (both organic and inorganic) affinities, in the U.S.A. coals studied, has an inorganic affinity in the English coals studied. B shows organic affinity in the samples from the Illinois basin (Fig. 1C). For the samples studied, Ba shows organic affinity in the Appalachian basin bituminous coals (Fig. 1B), inorganic affinity in the Illinois basin coals, and overall mixed affinities. In all the samples studied, Cu, Mn, Na, Sr, Ta, V, and Zn show mixed affinities, and A1, Co, Eu, Fe, Ga, K, La, Mg, Sc, Si, Th, Ti, and Ub have generally inorganic affinity.

There are no comments yet on this publication. Be the first to share your thoughts.