Affordable Access

Publisher Website

Preliminary whole-exome sequencing reveals mutations that imply common tumorigenicity pathways in multiple endocrine neoplasia type 1 patients

Authors
Journal
Surgery
0039-6060
Publisher
Elsevier
Identifiers
DOI: 10.1016/j.surg.2014.08.073
Disciplines
  • Biology
  • Medicine

Abstract

Background Whole-exome sequencing studies have not established definitive somatic mutation patterns among patients with sporadic hyperparathyroidism (HPT). No sequencing has evaluated multiple endocrine neoplasia type 1 (MEN1)-related HPT. We sought to perform whole-exome sequencing in HPT patients to identify somatic mutations and associated biological pathways and tumorigenic networks. Methods Whole-exome sequencing was performed on blood and tissue from HPT patients (MEN1 and sporadic) and somatic single nucleotide variants (SNVs) were identified. Stop-gain or stop-loss SNVs were analyzed with Ingenuity Pathways Analysis (IPA). Loss of heterozygosity (LOH) was also assessed. Results Sequencing was performed on 4 MEN1 and 10 sporadic cases. Eighteen stop-gain/stop-loss SNV mutations were identified in 3 MEN1 patients. One complex network was identified on IPA: Cellular function and maintenance, tumor morphology, and cardiovascular disease (IPA score = 49). A nonsynonymous SNV of TP53 (lysine-to-glutamic acid change at codon 81) identified in a MEN1 patient was suggested to be a driver mutation (Cancer-specific High-throughput Annotation of Somatic Mutations; P = .002). All MEN1 and 3/10 sporadic specimens demonstrated LOH of chromosome 11. Conclusion Whole-exome sequencing revealed somatic mutations in MEN1 associated with a single tumorigenic network, whereas sporadic pathogenesis seemed to be more diverse. A somatic TP53 mutation was also identified. LOH of chromosome 11 was seen in all MEN1 and 3 of 10 sporadic patients.

There are no comments yet on this publication. Be the first to share your thoughts.