Affordable Access

Publisher Website

Permanents of woven matrices

Authors
Journal
Linear Algebra and its Applications
0024-3795
Publisher
Elsevier
Publication Date
Volume
364
Identifiers
DOI: 10.1016/s0024-3795(02)00566-9

Abstract

Abstract A woven matrix, W, is a type of block matrix constructed from an m by n (0,1)-matrix D with row sums r 1, r 2,…, r m and column sums c 1, c 2,…, c n , r i by r i matrices R i ( i=1,2,…, m), and c j by c j matrices, C j ( j=1,2,…, n). Several properties of the determinant and the spectrum of woven matrices are known. In particular, the determinant of a woven matrix is ±(∏ i=1 m det R i )(∏ j=1 n det C j ). In this paper it is shown that in general the permanent of W is not determined by the permanents of the R i and C j . However, there are instances when (1) per W=± ∏ i=1 m per R i ∏ j=1 n per C j . For example, it is shown that (I) holds if at least m−1 of the R i are diagonal matrices. The main result of the paper is a characterization of the D’s for which each woven matrix, W, using D satisfies (I). As an application, we determine families of matrices whose permanents can be efficiently computed using determinants.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments