Affordable Access

Publisher Website

Predictions of tensile strength of binary tablets using linear and power law mixing rules

Authors
Journal
International Journal of Pharmaceutics
0378-5173
Publisher
Elsevier
Publication Date
Volume
333
Identifiers
DOI: 10.1016/j.ijpharm.2006.10.008
Keywords
  • Compaction
  • Tensile Strength
  • Binary Mixtures
  • Tablets
  • Mixing Rules

Abstract

Abstract There has recently been an increased interest in predicting the tensile strength of binary tablets from the properties of the individual components. In this paper, measurements are reported for tensile strength of tablets compressed from single-component and binary powder mixtures of lactose with microcrystalline cellulose (MCC), and lactose with two types of silicified microcrystalline cellulose (SMCC and SMCC-HD), which are different in compressibility. Measurements show the tensile strength increases with the relative density for single powders, and both with the relative density and the mass fraction of cellulose in the mixtures. It was also observed, for binary mixtures compacted at 50 and 150 MPa, that there was a slight variation in porosity with the mass fraction of celluloses. The predictions of the tensile strength of binary tablets from the characteristics of the single-components was analysed with the extended Ryshkewitch–Duckworth model by assuming both linear and power law mixing rules for the determination of the parameters “tensile strength at zero porosity and bonding capacity constant”. As consequence, four models were analysed and compared with measurements using criteria based on the standard deviation from the mean values. Results showed a good prediction using a linear mixing rule combined with the power law. However, as the predictions of these models depend on the powders and the porosity range for the characterization of single-components, none of them can be systematically considered as being the best to predict binary behaviour from data for individual powders.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments

More articles like this

Predictions of tensile strength of binary tablets...

on International Journal of Pharm... Mar 21, 2007

A simple predictive model for the tensile strength...

on European Journal of Pharmaceut... Jan 01, 2005

A simple predictive model for the tensile strength...

on European Journal of Pharmaceut... June 2005

Comparison of different mathematical models for th...

on European Journal of Pharmaceut... Jan 01, 2004
More articles like this..