Affordable Access

Room temperature phosphorescence of 9-bromophenanthrene, and the interaction with various metal ions

Elsevier B.V.
DOI: 10.1016/j.saa.2012.09.040
  • Phosphorescence
  • Sodium Deoxycholate
  • Aggregate
  • Metal Ions
  • Coordination Reaction
  • Fluorescence


Abstract The Flow Inject Drop Luminescence Sensor (FIDLS) is featured by advantages such as high precision and work simplification over typical luminescent spectrometers. With the FIDLS system, this study is the first to examine the sodium deoxycholate (NaDC) inducing room temperature phosphorescence (RTP) of 9-bromophenanthrene (BrP). Among the factors that influenced phosphorescence, the injection speed of the FIDLS was optimized at 5.0mLh−1. A solvent content of 1.0% or less was selected to avoid RTP quenching. When samples were placed at temperatures higher than room temperature (e.g., 303K), the standing time of the sample decreased. The minimum detectable level of BrP was 8.0×10−10molL−1, and BrP RTP reached its maximum intensity at a BrP concentration of 1.0×10−5molL−1. The optimal clathrate concentration of NaDC was 4.9×10−3molL−1, which was also the critical micelle concentration. We found that NaDC primary micelles gradually formed, but that secondary micelles formed and decomposed at a considerably faster rate. Fluorescence and absorbance tests demonstrated the coordination reactions of BrP with Cr6+ and Fe3+, indicating the potential application of BrP as a fluorescence probe.

There are no comments yet on this publication. Be the first to share your thoughts.