Affordable Access

Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine.

Authors
Publication Date
Source
PMC
Keywords
  • Research Article
Disciplines
  • Chemistry

Abstract

Cryptosporidium parvum oocysts and Clostridium perfringens spores are very resistant to chlorine and other drinking-water disinfectants. Clostridium perfringens spores have been suggested as a surrogate indicator of disinfectant activity against Cryptosporidium parvum and other hardy pathogens in water. In this study, an alternative disinfectant system consisting of an electrochemically produced mixed-oxidant solution (MIOX; LATA Inc.) was evaluated for inactivation of both Cryptosporidium parvum oocysts and Clostridium perfringens spores. The disinfection efficacy of the mixed-oxidant solution was compared to that of free chlorine on the basis of equal weight per volume concentrations of total oxidants. Batch inactivation experiments were done on purified oocysts and spores in buffered, oxidant demand-free water at pH 7 an 25 degrees C by using a disinfectant dose of 5 mg/liter and contact times of up to 24 h. The mixed-oxidant solution was considerably more effective than free chlorine in activating both microorganisms. A 5-mg/liter dose of mixed oxidants produced a > 3-log10-unit (> 99.9%) inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores in 4 h. Free chlorine produce no measurable inactivation of Cryptosporidium parvum oocysts by 4 or 24 h, although Clostridium perfringens spores were inactivated by 1.4 log10 units after 4 h. The on-site generation of mixed oxidants may be a practical and cost-effective system of drinking water disinfection protecting against even the most resistant pathogens, including Cryptosporidium oocysts.

There are no comments yet on this publication. Be the first to share your thoughts.