Affordable Access

Genetic analysis of the yopE region of Yersinia spp.: identification of a novel conserved locus, yerA, regulating yopE expression.

Publication Date
  • Research Article
  • Biology
  • Design


The yopE gene of Yersinia pseudotuberculosis was recently sequenced, and YopE was identified as an indispensable virulence determinant when tested in a mouse model (A. Forsberg and H. Wolf-Watz, Mol. Microbiol. 2:121-133, 1988). In the study described here, the DNA sequences of the yopE genes of Yersinia pestis EV76 and Yersinia enterocolitica 8081 were determined and compared with that of the Y. pseudotuberculosis gene. Only two codons were found to differ, both leading to amino acid replacements, when the gene from Y. pestis was compared. These two replacements were also present in the gene from Y. enterocolitica; in addition, 18 other codons were found to differ. Thirteen of these substitutions led to amino acid replacements. Downstream of the yopE gene, the plasmid partition locus par was found to be conserved in all three species. In Y. enterocolitica 8081, the sequence homology was interrupted by a putative insertion sequence element inserted between the yopE gene and the par region at a position only 5 base pairs downstream of the yopE stop codon. Upstream of the yopE gene, 620 base pairs were conserved in the three species. This region contained a 130-amino-acid-long open reading frame reading in the opposite direction to the yopE gene and expressed a 14-kilodalton protein in minicells. An insertion mutation in this region constructed in Y. pseudotuberculosis expressed significantly lower amounts of YopE protein in vitro than did the corresponding wild type. The expression level could be restored by transcomplementation. This new locus was designated yerA, for yopE-regulating gene A. The yerA mutant was avirulent when mice were challenged by oral infection.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times