Affordable Access

Computation of the invariant measure for a Lévy driven SDE: Rate of convergence



We study the rate of convergence of some recursive procedures based on some "exact" or "approximate" Euler schemes which converge to the invariant measure of an ergodic SDE driven by a Lévy process. The main interest of this work is to compare the rates induced by "exact" and "approximate" Euler schemes. In our main result, we show that replacing the small jumps by a Brownian component in the approximate case preserves the rate induced by the exact Euler scheme for a large class of Lévy processes.

There are no comments yet on this publication. Be the first to share your thoughts.