Affordable Access

Publisher Website

Flow and heat transfer characteristics of indirect dry cooling system with horizontal heat exchanger A-frames at ambient winds

Authors
Publisher
Elsevier Masson SAS
Volume
79
Identifiers
DOI: 10.1016/j.ijthermalsci.2014.01.007
Keywords
  • Indirect Dry Cooling System
  • Air-Cooled Heat Exchanger
  • Dry-Cooling Tower
  • Thermo-Hydraulic Performances
  • Wind Speed
  • Back Pressure
Disciplines
  • Computer Science
  • Design

Abstract

Abstract Ambient winds are key issues in the operation of indirect dry cooling system in power plants, so it is of use to make clear the thermo-hydraulic performances of indirect dry cooling system at ambient winds. On the basis of two indirect dry cooling systems with horizontally arranged heat exchanger bundles in the patterns of radial and rectangular A-frames, the computational models of air-side flow and heat transfer coupled with the performances of the circulating water and exhaust steam are developed. The velocity, pressure and temperature fields of cooling air in the absence and presence of winds are presented and the average mass flow rate of cooling air, inlet air temperature as well as the heat rejection for the A-frames of each cooling sector of the air-cooled heat exchanger are calculated, by which the outlet water temperature of heat exchanger and the back pressure of turbine are obtained. The results show that the wind effects on the thermo-hydraulic performances of indirect dry cooling system differ completely from those with vertically arranged air-cooled heat exchanger outside. The velocity and temperature fields present central symmetric characteristics for the heat exchanger in the radial pattern, however, the differences are observed for the heat exchanger A-frames in the rectangular pattern. The thermo-hydraulic performances of the upwind A-frames are most deteriorated by the adverse impacts of ambient winds, but they are improved for the downwind ones, just similar to those of direct dry cooling system. As the wind speed increases, the mass flow rate and heat rejection of the downwind A-frames increases, but they are reduced for the upwind ones. The outlet water temperature of the heat exchanger and back pressure of turbine increase with increasing wind speed. The investigation of wind effects on the flow and heat transfer characteristics of indirect dry cooling system with horizontal heat exchanger A-frames is of benefit to the design and operation of air-cooled heat exchangers and cooling towers.

There are no comments yet on this publication. Be the first to share your thoughts.