Affordable Access

Use of an autonomous parvovirus vector for selective transfer of a foreign gene into transformed human cells of different tissue origins and its expression therein.

Publication Date
  • Research Article
  • Biology
  • Medicine


In this work, we report the transduction of a chloramphenicol acetyltransferase (CAT) reporter gene into a variety of normal and transformed human cells of various tissue origins. The vector used was MVM/P38cat, a recombinant of the prototype strain of the autonomous parvovirus minute virus of mice (MVMp). The CAT gene was inserted into the capsid-encoding region of the infectious molecular clone of MVMp genome, under the control of the MVM P38 promoter. When used to transfect permissive cells, the MVM/P38cat DNA was efficiently replicated and expressed the foreign CAT gene at high levels. By cotransfecting with a helper plasmid expressing the capsid proteins, it was possible to produce mixed virus stocks containing MVM/P38cat infectious particles and variable amounts of recombinant MVM. MVM/P38cat viral particles were successfully used to transfer the CAT gene and to express it in a variety of human cells. Both viral DNA replication and P38-driven CAT expression were achieved in fibroblasts, epithelial cells, T lymphocytes, and macrophages in a transformation-dependent way, but with an efficiency depending on the cell type. In transformed B lymphocytes, however, the vector was not replicated, nor did it express the CAT gene.

There are no comments yet on this publication. Be the first to share your thoughts.