Affordable Access

Enzyme and acid catalyzed degradation of PEG45-b-PBO0,6,9-b-PCL60 micelles: Increased hydrolytic stability by engineering the hydrophilic–hydrophobic interface

Authors
Journal
Polymer
0032-3861
Publisher
Elsevier
Publication Date
Volume
54
Issue
12
Identifiers
DOI: 10.1016/j.polymer.2013.03.055
Keywords
  • Block Copolymer Micelle
  • Acid Hydrolysis
  • Lipase Enzyme
  • Hydrolytic Degradation
  • Hydrophilic–Hydrophobic Interface
Disciplines
  • Biology

Abstract

Abstract Acid and Pseudomonas (P.) cepacia lipase catalyzed ester hydrolysis were evaluated for block copolymer micelles generated from low polydispersity PEG45-b-PBOn-b-PCL60 (n = 0, 6, 9). Moving the hydrophilic–hydrophobic junction away from the PCL micelle core–water interface by inserting a short hydrophobic non-hydrolyzable PBO segment between the PEG and PCL blocks was studied as a strategy for tuning the micelle hydrolytic stability. 1H NMR was applied in evaluating the micelle and solution compositions and to determine kinetic parameters. Acid and lipase catalyzed micelle hydrolysis proceed by distinctly different routes. Micelles from the triblock copolymers PEG45-b-PBOn-b-PCL60 (n = 6, 9) are observed to react substantially slower and persist intact longer in the presence of both strong acids and lipase enzymes than micelles of the parent diblock copolymer (PEG45-b-PCL60).

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments