Affordable Access

Sunlight Inactivation of Fecal Bacteriophages and Bacteria in Sewage-Polluted Seawater

American Society for Microbiology
Publication Date
  • Environmental And Public Health Microbiology


Sunlight inactivation rates of somatic coliphages, F-specific RNA bacteriophages (F-RNA phages), and fecal coliforms were compared in seven summer and three winter survival experiments. Experiments were conducted outdoors, using 300-liter 2% (vol/vol) sewage-seawater mixtures held in open-top chambers. Dark inactivation rates (kDs), measured from exponential survival curves in enclosed (control) chambers, were higher in summer (temperature range: 14 to 20°C) than in winter (temperature range: 8 to 10°C). Winter kDs were highest for fecal coliforms and lowest for F-RNA phages but were the same or similar for all three indicators in summer. Sunlight inactivation rates (kS), as a function of cumulative global solar radiation (insolation), were all higher than the kDs with a consistent kS ranking (from greatest to least) as follows: fecal coliforms, F-RNA phages, and somatic coliphages. Phage inactivation was exponential, but bacterial curves typically exhibited a shoulder. Phages from raw sewage exhibited kSs similar to those from waste stabilization pond effluent, but raw sewage fecal coliforms were inactivated faster than pond effluent fecal coliforms. In an experiment which included F-DNA phages and Bacteroides fragilis phages, the kS ranking (from greatest to least) was as follows: fecal coliforms, F-RNA phages, B. fragilis phages, F-DNA phages, and somatic coliphages. In a 2-day experiment which included enterococci, the initial concentration ranking (from greatest to least: fecal coliforms, enterococci, F-RNA phages, and somatic coliphages) was reversed during sunlight exposure, with only the phages remaining detectable by the end of day 2. Inactivation rates under different optical filters decreased with the increase in spectral cutoff wavelength (50% light transmission) and indicated that F-RNA phages and fecal coliforms are more susceptible than somatic coliphages to longer solar wavelengths, which predominate in seawater. The consistently superior survival of somatic coliphages in our experiments suggests that they warrant further consideration as fecal, and possibly viral, indicators in marine waters.

There are no comments yet on this publication. Be the first to share your thoughts.