Affordable Access

Publisher Website

Experimental selection of hypoxia-tolerant Drosophila melanogaster.

Authors
Type
Published Article
Journal
Proceedings of the National Academy of Sciences
0027-8424
Publisher
Proceedings of the National Academy of Sciences
Volume
108
Issue
6
Pages
2349–2354
Identifiers
DOI: 10.1073/pnas.1010643108
Source
Frazer Lab

Abstract

Through long-term laboratory selection (over 200 generations), we have generated Drosophila melanogaster populations that tolerate severe, normally lethal, levels of hypoxia. Because of initial experiments suspecting genetic mechanisms underlying this adaptation, we compared the genomes of the hypoxia-selected flies with those of controls using deep resequencing. By applying unique computing and analytical methods we identified a number of DNA regions under selection, mostly on the X chromosome. Several of the hypoxia-selected regions contained genes encoding or regulating the Notch pathway. In addition, previous expression profiling revealed an activation of the Notch pathway in the hypoxia-selected flies. We confirmed the contribution of Notch activation to hypoxia tolerance using a specific γ-secretase inhibitor, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), which significantly reduced adult survival and life span in the hypoxia-selected flies. We also demonstrated that flies with loss-of-function Notch mutations or RNAi-mediated Notch knockdown had a significant reduction in hypoxia tolerance, but those with a gain-of-function had a dramatic opposite effect. Using the UAS-Gal4 system, we also showed that specific overexpression of the Notch intracellular domain in glial cells was critical for conferring hypoxia tolerance. Unique analytical tools and genetic and bioinformatic strategies allowed us to discover that Notch activation plays a major role in this hypoxia tolerance in Drosophila melanogaster.

There are no comments yet on this publication. Be the first to share your thoughts.