Affordable Access

Schwarz Methods: To Symmetrize or Not to Symmetrize

Publication Date
  • Caltech Library Services
  • Computer Science


A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of nonvariational and nonconvergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that the absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.

There are no comments yet on this publication. Be the first to share your thoughts.