Affordable Access

Publisher Website

A climate-driven abundance model to assess mosquito control strategies

Authors
Journal
Ecological Modelling
0304-3800
Publisher
Elsevier
Publication Date
Volume
227
Identifiers
DOI: 10.1016/j.ecolmodel.2011.10.027
Keywords
  • Climate-Driven Model
  • Population Dynamics
  • Control Strategy
  • Sensitivity Analysis
  • Mosquito
  • Anopheles
Disciplines
  • Biology
  • Medicine

Abstract

Abstract As mosquitoes are vectors of major pathogens worldwide, the control of mosquito populations is one way to fight vector-borne diseases. The objectives of our study were to develop a tool to predict mosquito abundance over time, identify the main determinants of mosquito population dynamics, and assess mosquito control strategies. We developed a generic, mechanistic, climate-driven model of seasonal mosquito population dynamics that can be run over several years because it takes diapause into account. Both aquatic and adult stages are considered, resulting in 10 model compartments: eggs, larvae, and pupae for juveniles; emergent, nulliparous, and parous for adults, the latter two broken down into host-seeking, resting, and ovipositing adults. We then applied the model to Anopheles species of southern France, some of which (nulliparous adults) overwinter. We defined specific transition functions and parameter values for these species and this geographical area based on a literature review. Our model correctly predicted entomological field data. Control points in the model were related to mortality rates of adults, the sex-ratio at emergence, parameters related to development functions and the number of eggs laid by females. Lastly, we used our model to compare the efficiency of mosquito control strategies targeting larvae. We found that a larvicide spraying at regular time intervals acted as a preventive measure against mosquito emergence, and that such a strategy was more efficient than spraying only when the abundance of host-seeking females reached a given threshold. The proposed model can be applied easily to other mosquito species and geographic areas by adapting transition functions and parameter values.

There are no comments yet on this publication. Be the first to share your thoughts.