Affordable Access

An embedding theorem for real analytic spaces

Authors
Publication Date
Disciplines
  • Law
  • Mathematics

Abstract

An embedding theorem for real analytic spaces ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze F. ACQUISTAPACE F. BROGLIA A. TOGNOLI An embedding theorem for real analytic spaces Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 6, no 3 (1979), p. 415-426. <http://www.numdam.org/item?id=ASNSP_1979_4_6_3_415_0> © Scuola Normale Superiore, Pisa, 1979, tous droits réservés. L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ An Embedding Theorem for Real Analytic Spaces (*). F. ACQUISTAPACE (**) - F. BROGLIA (**) - A. TOGNOLI (**) Introduction. Let TT be a real analytic, paracompact connected manifold of dimension n. H. Grauert has proved (see [4]) that V is isomorphic to a closed sub- manifold of R2n+1. If (X, (9x) is a paracompact connected coherent real analytic space and N = sup dim zx, N &#x3E; n, where 7:ae is the Zariski tangent space, then (X, C9g) xc-X can be embedded in Rn+N (i.e. is isomorphic to a closed real analytic sub- space of Rn+N) (see [16]). The purpose of this paper is to prove that if (X, 19x) is a (reduced) real analytic space, paracompact and connected and if N = sup dim T + o0 x EX then (X,l9x) can be embedded in an euclidean space Ra. Using the above result one can prove that the embeddings X - Rn+N are dense in the space of the 000 maps of X into Rn+N. 1. - Definitions and preliminary remarks. In this paragraph we shall recall some definitions and well known facts that we shall.us

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments

More articles like this

Sobolev Embedding Theorems for SpacesWk, p( x)(Ω)

on Journal of Mathematical Analys... Jan 01, 2001

An embedding theorem for Lasnev spaces

on General Topology and its Appli... Jan 01, 1976
More articles like this..