Affordable Access

Publisher Website

Purification of guanosine triphosphate cyclohydrolase I fromEscherichia coli:The use of competitive inhibitors versus substrate as ligands in affinity chromatography

Journal of Chromatography A
Publication Date
DOI: 10.1016/s0021-9673(01)95830-3
  • Biology


Abstract Different affinity chromatography ligands have been compared for the purification of guanosine triphosphate (GTP) cyclohydrolase I, an enzyme that catalyses the transformation of GTP into formate and dihydroneopterin triphosphate, the first metabolite in the biosynthetic pathway of the pterins. When this enzyme is purified by affinity chromatography on GTP-Sepharose a major fraction of the activity is lost and the yield of enzyme decreases as the amount of enzyme applied to the column decreases. The use of nucleotide competitive inhibitors (UTP and ATP) as ligands in the affiity column has shown that the extent of inactivation of the enzyme is related to the affinity of the enzyme for the ligand. Further, the extent of inactivation was reduced by reducing the length of the columns when using the same volume of GTP-Sepharose. Dihydrofolate-Sepharose gave consistently higher yields of GTP cyclohydrolase I regardless of the amount of enzyme applied, but several other proteins were also obtained. For a higher purification of GTP cyclohydrolase I the best yield may be obtained with UTP as the affinity ligand and with the shortest length possible of the affinity column, and the purity of enzyme is comparable with that obtained with GTP-Sepharose.

There are no comments yet on this publication. Be the first to share your thoughts.