Affordable Access

Publisher Website

Activation of the Endoplasmic Reticulum Stress-Associated Transcription Factor X Box-Binding Protein-1 Occurs in a Subset of Normal Germinal-Center B Cells and in Aggressive B-Cell Lymphomas with Prognostic Implications

American Journal Of Pathology
Publication Date
DOI: 10.2353/ajpath.2009.080848
  • Tumorigenesis And Neoplastic Progression


X box-binding protein 1 (Xbp-1) is a transcription factor that is required for the terminal differentiation of B lymphocytes into plasma cells. The Xbp-1 gene is activated in response to endoplasmic reticulum stress signals, which generate a 50-kDa nuclear protein that acts as a potent transactivator and regulates the expression of genes related to the unfolded protein response. Activated Xbp-1 is essential for cell survival in plasma-cell tumors but its role in B-cell lymphomas is unknown. We analyzed the expression of activated Xbp-1 in reactive lymphoid tissues, 411 lymphomas and plasma-cell neoplasms, and 24 B-cell lines. In reactive tissues, Xbp-1 was only found in nuclear extracts. Nuclear expression of Xbp-1 was observed in occasional reactive plasma cells and in a subpopulation of Irf-4 +/Bcl-6 −/Pax-5 − B cells in the light zones of reactive germinal centers, probably representing cells committed to plasma-cell differentiation. None of the low-grade lymphomas showed evidence of Xbp-1 activation; however, Xbp-1 activation was found in 28% of diffuse large B-cell lymphomas, independent of germinal or postgerminal center phenotype, as well as in 48% of plasmablastic lymphomas and 69% of plasma-cell neoplasms. Diffuse large B-cell lymphomas with nuclear Xbp-1 expression had a significantly worse response to therapy and shorter overall survival compared with negative tumors. These findings suggest that Xbp-1 activation may play a role in the pathogenesis of aggressive B-cell lymphomas.

There are no comments yet on this publication. Be the first to share your thoughts.