Affordable Access

Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin.

Authors
Publication Date
Source
PMC
Keywords
  • Research Article
Disciplines
  • Biology

Abstract

We detected a glycoprotein on the surface of cells infected with herpes simplex virus type 1 (HSV-1) which, in conjunction with gE, binds immunoglobulin G (IgG). The novel glycoprotein, which has an apparent molecular mass of 70 kilodaltons and was provisionally named g70, was first detected in extracts of HSV-1-infected cells labeled by lactoperoxidase-catalyzed iodination and precipitated with rabbit sera or IgG and protein A-Sepharose. In subsequent experiments, g70 and gE were coprecipitated from extracts of HSV-1-infected cells labeled with [35S]methionine, [35S]cysteine, or 14C-amino acids. We were unable to precipitate a polypeptide analogous to g70 or gE from extracts of HSV-2-infected cells with rabbit IgG and protein A-Sepharose. Partial proteolytic peptide analysis indicated that g70 is structurally distinct from gE and gI). In addition, g70 was electrophoretically distinct from the HSV-1 Us4 glycoprotein gG. HSV-1 gE, expressed in mouse cells transfected with the gE gene, was not precipitated with rabbit IgG, nor could these cells bind radiolabeled IgG, suggesting that gE alone cannot act as an IgG (Fc) receptor. This result, coupled with the findings that gE and g70 are coprecipitated with IgG and with an anti-gE monoclonal antibody, suggests that gE and g70 form a complex which binds IgG. The electrophoretic mobilities of g70 molecules induced by different strains of HSV-1 differed markedly, arguing that g70 is encoded by the virus and is not a cellular protein induced by virus infection.

There are no comments yet on this publication. Be the first to share your thoughts.