Affordable Access

Publisher Website

Associations of MMP1, 3, 9 and TIMP3 Genes Polymorphism with Isolated Systolic Hypertension in Chinese Han Population

International Journal of Medical Sciences
Ivyspring International Publisher
Publication Date
DOI: 10.7150/ijms.5728
  • Research Paper
  • Biology


Background and aims: Large artery stiffness and endothelial dysfunction are the predominant characteristic of isolated systolic hypertension. Recently studies have revealed MMP1, 3, 9 and TIMP3 Genes polymorphism were associated with arterial stiffness, but the relationship with isolated systolic hypertension were not further studied. This study was to investigate the associations of MMP1,3,9 and TIMP3 Genes polymorphism with isolated systolic hypertension. Methods: We identified the genotype of the genes in 503 patients with isolated systolic hypertension, 481 essential hypertension patients with elevated diastolic blood pressure and 244 age-matched normotensive controls for 5 SNPs and detected the brachial-ankle pulse wave velocity, flow-mediated dilatation, endothelin-1 and nitric oxide among the participants. Results: Multinomial logistic analyses showed that the 5A allele of rs3025058(5A/6A) in MMP3 and the T allele of rs3918242(C-1562T) in MMP9 were significantly associated with isolated systolic hypertension after adjusted by age, triglyceride, low-density lipoprotein (P<0.001, Pcorr<0.003; P=0.009, Pcorr=0.027). The 5A/G/C and 6A/A/T haplotypes were significantly associated with isolated systolic hypertension (Permutation p=0.0258; Permutation p=0.000002). In addition, the brachial-ankle pulse wave velocity of different genotypes for the 5A/6A and C-1562T polymorphisms was significantly highest in 5A or T homozygotes (P<0.01), however, the flow-mediated dilatation and nitric oxide were markedly lowest in 5A or T homozygotes (P<0.01). Conclusion: MMP3 and MMP9 genes variant seem to contribute to the development of isolated systolic hypertension by affecting arterial stiffness and endothelial function.

There are no comments yet on this publication. Be the first to share your thoughts.