Affordable Access

Improved Inference of Relationship for Pairs of Individuals

The American Society of Human Genetics
Publication Date
  • Articles
  • Biology
  • Mathematics
  • Medicine


Linkage analyses of genetic diseases and quantitative traits generally are performed using family data. These studies assume the relationships between individuals within families are known correctly. Misclassification of relationships can lead to reduced or inappropriately increased evidence for linkage. Boehnke and Cox (1997) presented a likelihood-based method to infer the most likely relationship of a pair of putative sibs. Here, we modify this method to consider all possible pairs of individuals in the sample, to test for additional relationships, to allow explicitly for genotyping error, and to include X-linked data. Using autosomal genome scan data, our method has excellent power to differentiate monozygotic twins, full sibs, parent-offspring pairs, second-degree (2°) relatives, first cousins, and unrelated pairs but is unable to distinguish accurately among the 2° relationships of half sibs, avuncular pairs, and grandparent-grandchild pairs. Inclusion of X-linked data improves our ability to distinguish certain types of 2° relationships. Our method also models genotyping error successfully, to judge by the recovery of MZ twins and parent-offspring pairs that are otherwise misclassified when error exists. We have included these extensions in the latest version of our computer program RELPAIR and have applied the program to data from the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus (FUSION) study.

There are no comments yet on this publication. Be the first to share your thoughts.