Affordable Access

Modelling sea water intrusion in coastal aquifers using heterogeneous computing

Authors
Publisher
Queensland University of Technology
Publication Date
Keywords
  • Sea Water Intrusion
  • Coastal Aquifers
  • Heterogeneous Computing
Disciplines
  • Computer Science
  • Mathematics

Abstract

The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.

There are no comments yet on this publication. Be the first to share your thoughts.