Affordable Access

Two Multiallelic Mating Compatibility Loci Separately Regulate Zygote Formation and Zygote Differentiation in the Myxomycete PHYSARUM POLYCEPHALUM

The Genetics Society of America
Publication Date
  • Investigations
  • Biology


The mating of Physarum polycephalum amoebae, the ultimate consequence of which is a "plasmodium," was recently shown to be governed by two compatibility loci, matA (or mt) and matB (Dee 1978; Youngman et al. 1979). We present evidence that matA and matB separately regulate two discrete stages of mating: in the first stage, amoebae (which are normally haploid) fuse in pairs, with a specificity determined by matB genotype, to form diploid zygotes; subsequent differentiation of the zygotes into plasmodia is regulated by matA and is unaffected by matB. Mixtures of amoebae carrying unlike matA and matB alleles formed diploids to the extent of 10 to 15% of the cells present, and the diploids differentiated into plasmodia. When only the matB alleles differed, diploid cells still formed to a comparable (5 to 10%) extent, but rather than differentiating, these diploids remained amoebae. When strains carried the same alleles of matB, formation of diploid cells was greatly reduced: in like-matB, like-matA mixtures, none of 320 cells examined was diploid; in like-matB, unlike mat-A mixtures, differentiating diploids could be detected, but at only 10-3 to 10-2 the frequency of unlike-matB, unlike-matA mixtures. The nondifferentiating diploid amoebae recovered from unlike-matB, like-matA mixtures were genetically stable through extensive growth, even though they grew more slowly than haploids (10-hr vs. 8-hr doubling period), and could be crossed with both haploids and diploids. The results of such higher ploidy and mixed ploidy crosses indicate that karyogamy does not invariably accompany zygote formation and differentiation.

There are no comments yet on this publication. Be the first to share your thoughts.