Affordable Access

Tuberculosis DNA Vaccine Encoding Ag85A Is Immunogenic and Protective When Administered by Intramuscular Needle Injection but Not by Epidermal Gene Gun Bombardment

American Society for Microbiology
Publication Date
  • Microbial Immunity And Vaccines


Immunogenicity and protective efficacy of a DNA vaccine encoding Ag85A from Mycobacterium tuberculosis were compared in BALB/c and C57BL (B6 and B10) mice immunized by intramuscular (i.m.) needle injection or epidermal gene gun (gg) bombardment. In BALB/c mice, gg immunization could induce elevated antibody and cytotoxic T lymphocyte responses with plasmid doses 50-fold lower than those required for i.m. immunization. Interleukin-2 (IL-2) and gamma interferon (IFN-γ) secretion, however, was much lower in gg-immunized than in i.m.-immunized BALB/c mice. On the other hand, C57BL mice reacted only very weakly to gg immunization, whereas elevated Ag85A-specific antibody, IL-2, and IFN-γ responses (significantly higher than in BALB/c mice) were detected following vaccination by the i.m. route. Antibody isotypes were indicative of Th2 activation following gg injection of BALB/c and of Th1 activation following i.m. injection of C57BL mice. Finally, C57BL but not BALB/c mice were protected by i.m. Ag85A DNA immunization against intravenous M. tuberculosis challenge, as measured by reduced numbers of CFU in spleen and lungs, compared to animals vaccinated with control DNA. Gene gun immunization was not effective in either BALB/c or C57BL mice. These results indicate that i.m. DNA vaccination is the method of choice for the induction of protective Th1 type immune responses with the Ag85A tuberculosis DNA vaccine.

There are no comments yet on this publication. Be the first to share your thoughts.